Jhargram Raj College
 Internal Assessment 2022
 5th SEM Physics (Honours)
 Paper-C-11
 Full Marks: 10

Answer any five Questions

1. Which one of the following is not physical wave function and why?
(i)
$3 \cos \pi x$
(ii) $4-|x|$
(iii) $A \exp \left(-x^{2}\right)$
(iv) $A \exp (-\alpha|x|)$
2. Consider a one-dimensional particle which is confined within the region $0 \leq x \leq a$ and whose wave function is $\psi(x, t)=\sin \left(\frac{\pi x}{a}\right) \exp (-i \omega t)$. Find the potential $\mathrm{V}(\mathrm{x})$ and calculate the probability of finding the particle in the interval $\mathrm{a} / 4 \leq \mathrm{x} \leq 3 \mathrm{a} / 4$.
3. Find the state $\psi(x)$ for which $\hat{A} \psi(x)=0$ and normalize it.

Where $\hat{A}=i\left(\hat{x}^{2}+1\right) \frac{d}{d x}+i \hat{x}$
4. Consider the operator $\hat{Q}=i \frac{d}{d \phi}$, where ϕ is the usual polar coordinate in two dimensions. Is \hat{Q} hermitian? Find its eigen function and eigen values.
5. Show that the eigen vectors corresponding to distinct eigen values of a Hermitian operator are mutually orthogonal.
6. Show that the expectation value of momentum (P) is real.
7. A particle of mass m , which moves freely inside an infinite potential well of length a, is initially in the state $\psi(x, 0)=\sqrt{\frac{3}{5 a}} \sin \left(\frac{3 \pi x}{a}\right)+\frac{1}{\sqrt{5 a}} \sin \left(\frac{5 \pi x}{a}\right)$.

Find $\psi(x, t)$ at any later time t .
8. Prove that $\left[\widehat{H,} \widehat{P_{x}^{2}}\right]=2 i \hbar \frac{\partial V}{\partial x} \widehat{P_{x}}+\hbar^{2} \frac{\partial^{2} V}{\partial x^{2}}$

